广告

原创 c语言编程的几种排序算法比较

2008-10-28 12:15 6095 0 分类: MCU/ 嵌入式

排序算法是一种基本并且常用的算法。由于实际工作中处理的数量巨大,所以排序算法 对算法本身的速度要求很高。 而一般我们所谓的算法的性能主要是指算法的复杂度,一般用O方法来表示。在后面我将 给出详细的说明。
       对于排序的算法我想先做一点简单的介绍,也是给这篇文章理一个提纲。 我将按照算法的复杂度,从简单到难来分析算法。 第一部分是简单排序算法,后面你将看到他们的共同点是算法复杂度为O(N*N)(因为没有使用word,所以无法打出上标和下标)。 第二部分是高级排序算法,复杂度为O(Log2(N))。这里我们只介绍一种算法。另外还有几种 算法因为涉及树与堆的概念,所以这里不于讨论。 第三部分类似动脑筋。这里的两种算法并不是最好的(甚至有最慢的),但是算法本身比较 奇特,值得参考(编程的角度)。同时也可以让我们从另外的角度来认识这个问题。现在,让我们开始吧:
一、简单排序算法
由于程序比较简单,所以没有加什么注释。所有的程序都给出了完整的运行代码,并在我的VC环境
下运行通过。因为没有涉及MFC和WINDOWS的内容,所以在BORLAND C++的平台上应该也不会有什么
问题的。在代码的后面给出了运行过程示意,希望对理解有帮助。
1.冒泡法:
这是最原始,也是众所周知的最慢的算法了。他的名字的由来因为它的工作看来象是冒泡:
#i nclude <iostream.h>
void BubbleSort(int* pData,int Count)
{
 int iTemp;
 for(int i="1";i<Count;i++)
       {
         for(int j="Count-1";j>=i;j--)
                {
                  if(pData[j]<pData[j-1])
                            {
                              iTemp = pData[j-1];
                              pData[j-1] = pData[j];
                              pData[j] = iTemp;
                            }
                }
       }
}


void main()
{
 int data[] = {10,9,8,7,6,5,4};
 BubbleSort(data,7);
 for (int i="0";i<7;i++)
            cout<<data<<" ";
 cout<<"\n";
}


倒序(最糟情况)
第一轮:10,9,8,7->10,9,7,8->10,7,9,8->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,10,8,9->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次
其他:
第一轮:8,10,7,9->8,10,7,9->8,7,10,9->7,8,10,9(交换2次)
第二轮:7,8,10,9->7,8,10,9->7,8,10,9(交换0次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
上面我们给出了程序段,现在我们分析它:这里,影响我们算法性能的主要部分是循环和交换, 显然,次数越多,性能就越差。从上面的程序我们可以看出循环的次数是固定的,为1+2+...+n-1。 写成公式就是1/2*(n-1)*n。 现在注意,我们给出O方法的定义:
若存在一常量K和起点n0,使当n>=n0时,有f(n)<=K*g(n),则f(n) = O(g(n))。(呵呵,不要说没 学好数学呀,对于编程数学是非常重要的!!!)


现在我们来看1/2*(n-1)*n,当K=1/2,n0=1,g(n)=n*n时,1/2*(n-1)*n<=1/2*n*n=K*g(n)。所以f(n) =O(g(n))=O(n*n)。所以我们程序循环的复杂度为O(n*n)。 再看交换。从程序后面所跟的表可以看到,两种情况的循环相同,交换不同。其实交换本身同数据源的 有序程度有极大的关系,当数据处于倒序的情况时,交换次数同循环一样(每次循环判断都会交换), 复杂度为O(n*n)。当数据为正序,将不会有交换。复杂度为O(0)。乱序时处于中间状态。正是由于这样的 原因,我们通常都是通过循环次数来对比算法。
2.交换法:
交换法的程序最清晰简单,每次用当前的元素一一的同其后的元素比较并交换。
#i nclude <iostream.h>
void ExchangeSort(int* pData,int Count)
{
 int iTemp;
 for(int i="0";i<Count-1;i++)
          {
            for(int j="i"+1;j<Count;j++)
                     {
                       if(pData[j]<pData)
                                 {
                                   iTemp = pData;
                                   pData = pData[j];
                                   pData[j] = iTemp;
                                 }
                     }
         }
}


void main()
{
 int data[] = {10,9,8,7,6,5,4};
 ExchangeSort(data,7);
 for (int i="0";i<7;i++)
              cout<<data<<" ";
 cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7->8,10,9,7->7,10,9,8(交换3次)
第二轮:7,10,9,8->7,9,10,8->7,8,10,9(交换2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:6次


其他:
第一轮:8,10,7,9->8,10,7,9->7,10,8,9->7,10,8,9(交换1次)
第二轮:7,10,8,9->7,8,10,9->7,8,10,9(交换1次)
第一轮:7,8,10,9->7,8,9,10(交换1次)
循环次数:6次
交换次数:3次


从运行的表格来看,交换几乎和冒泡一样糟。事实确实如此。循环次数和冒泡一样 也是1/2*(n-1)*n,所以算法的复杂度仍然是O(n*n)。由于我们无法给出所有的情况,所以 只能直接告诉大家他们在交换上面也是一样的糟糕(在某些情况下稍好,在某些情况下稍差)。


3.选择法:
现在我们终于可以看到一点希望:选择法,这种方法提高了一点性能(某些情况下) 这种方法类似我们人为的排序习惯:从数据中选择最小的同第一个值交换,在从省下的部分中 选择最小的与第二个交换,这样往复下去。
#i nclude <iostream.h>
void SelectSort(int* pData,int Count)
{
 int iTemp;
 int iPos;
 for(int i="0";i<Count-1;i++)
            {
              iTemp = pData;
              iPos = i;
              for(int j="i"+1;j<Count;j++)
                           {
                             if(pData[j]<iTemp)
                                        {
                                          iTemp = pData[j];
                                          iPos = j;
                                         }
                           }
              pData[iPos] = pData;
              pData = iTemp;
             }
}


void main()
{
 int data[] = {10,9,8,7,6,5,4};
 SelectSort(data,7);
 for (int i="0";i<7;i++)
            cout<<data<<" ";
 cout<<"\n";
}
倒序(最糟情况)
第一轮:10,9,8,7->(iTemp=9)10,9,8,7->(iTemp=8)10,9,8,7->(iTemp=7)7,9,8,10(交换1次)
第二轮:7,9,8,10->7,9,8,10(iTemp=8)->(iTemp=8)7,8,9,10(交换1次)
第一轮:7,8,9,10->(iTemp=9)7,8,9,10(交换0次)
循环次数:6次
交换次数:2次


其他:
第一轮:8,10,7,9->(iTemp=8)8,10,7,9->(iTemp=7)8,10,7,9->(iTemp=7)7,10,8,9(交换1次)
第二轮:7,10,8,9->(iTemp=8)7,10,8,9->(iTemp=8)7,8,10,9(交换1次)
第一轮:7,8,10,9->(iTemp=9)7,8,9,10(交换1次)
循环次数:6次
交换次数:3次
遗憾的是算法需要的循环次数依然是1/2*(n-1)*n。所以算法复杂度为O(n*n)。 我们来看他的交换。由于每次外层循环只产生一次交换(只有一个最小值)。所以f(n)<=n 所以我们有f(n)=O(n)。所以,在数据较乱的时候,可以减少一定的交换次数。


4.插入法:
插入法较为复杂,它的基本工作原理是抽出牌,在前面的牌中寻找相应的位置插入,然后继续下一张
#i nclude <iostream.h>
void InsertSort(int* pData,int Count)
{
 int iTemp;
 int iPos;
 for(int i="1";i<Count;i++)
             {
              iTemp = pData;
              iPos = i-1;
              while((iPos>=0) && (iTemp<pData[iPos]))
                              {
                                pData[iPos+1] = pData[iPos];
                                iPos--;
                              }
              pData[iPos+1] = iTemp;
            }
}


void main()
{
 int data[] = {10,9,8,7,6,5,4};
 InsertSort(data,7);
 for (int i="0";i<7;i++)
            cout<<data<<" ";
 cout<<"\n";
}


倒序(最糟情况)
第一轮:10,9,8,7->9,10,8,7(交换1次)(循环1次)
第二轮:9,10,8,7->8,9,10,7(交换1次)(循环2次)
第一轮:8,9,10,7->7,8,9,10(交换1次)(循环3次)
循环次数:6次
交换次数:3次


其他:
第一轮:8,10,7,9->8,10,7,9(交换0次)(循环1次)
第二轮:8,10,7,9->7,8,10,9(交换1次)(循环2次)
第一轮:7,8,10,9->7,8,9,10(交换1次)(循环1次)
循环次数:4次
交换次数:2次


上面结尾的行为分析事实上造成了一种假象,让我们认为这种算法是简单算法中最好的,其实不是, 因为其循环次数虽然并不固定,我们仍可以使用O方法。从上面的结果可以看出,循环的次数f(n)<= 1/2*n*(n-1)<=1/2*n*n。所以其复杂度仍为O(n*n)(这里说明一下,其实如果不是为了展示这些简单 排序的不同,交换次数仍然可以这样推导)。现在看交换,从外观上看,交换次数是O(n)(推导类似 选择法),但我们每次要进行与内层循环相同次数的‘=’操作。正常的一次交换我们需要三次‘=’ 而这里显然多了一些,所以我们浪费了时间。


最终,我个人认为,在简单排序算法中,选择法是最好的。


二、高级排序算法:
高级排序算法中我们将只介绍这一种,同时也是目前我所知道(我看过的资料中)的最快的。 它的工作看起来仍然象一个二叉树。首先我们选择一个中间值middle程序中我们使用数组中间值,然后 把比它小的放在左边,大的放在右边(具体的实现是从两边找,找到一对后交换)。然后对两边分别使 用这个过程(最容易的方法——递归)。
1.快速排序:
#i nclude <iostream.h>
void run(int* pData,int left,int right)
{
 int i,j;
 int middle,iTemp;
 i = left;
 j = right;
 middle = pData[(left+right)/2]; //求中间值
  do{
        while((pData<middle) && (i<right))//从左扫描大于中值的数
                       i++;
        while((pData[j]>middle) && (j>left))//从右扫描大于中值的数
                       j--;
        if(i<=j)//找到了一对值
                      {
                       //交换
                        iTemp = pData;
                        pData = pData[j];
                        pData[j] = iTemp;
                        i++;
                        j--;
                      }
}while(i<=j);//如果两边扫描的下标交错,就停止(完成一次)


//当左边部分有值(left<j),递归左半边
if(left<j)
          run(pData,left,j);
//当右边部分有值(right>i),递归右半边
if(right>i)
          run(pData,i,right);
}
void QuickSort(int* pData,int Count)
{
 run(pData,0,Count-1);
}
void main()
{
 int data[] = {10,9,8,7,6,5,4};
 QuickSort(data,7);
 for (int i="0";i<7;i++)
           cout<<data<<" ";
 cout<<"\n";
}
这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况
1.数组的大小是2的幂,这样分下去始终可以被2整除。假设为2的k次方,即k=log2(n)。
2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。
第一层递归,循环n次,第二层循环2*(n/2)......
所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n
所以算法复杂度为O(log2(n)*n)
其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变 成交换法(由于使用了递归,情况更糟)。但是你认为这种情况发生的几率有多大??呵呵,你完全 不必担心这个问题。实践证明,大多数的情况,快速排序总是最好的。 如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢 于快速排序(因为要重组堆)。


三、其他排序
1.双向冒泡:
通常的冒泡是单向的,而这里是双向的,也就是说还要进行反向的工作。 代码看起来复杂,仔细理一下就明白了,是一个来回震荡的方式。 写这段代码的作者认为这样可以在冒泡的基础上减少一些交换(我不这么认为,也许我错了)。 反正我认为这是一段有趣的代码,值得一看。
#i nclude <iostream.h>
void Bubble2Sort(int* pData,int Count)
{
 int iTemp;
 int left = 1;
 int right =Count -1;
 int t;
 do {
        //正向的部分
       for(int i="right";i>=left;i--)
                   {
                     if(pData<pData[i-1])
                                  {
                                    iTemp = pData;
                                    pData = pData[i-1];
                                    pData[i-1] = iTemp;
                                    t = i;
                                  }
                   }
        left = t+1;
        //反向的部分
        for(i=left;i<right+1;i++)
                   {
                     if(pData<pData[i-1])
                                   {
                                     iTemp = pData;
                                     pData = pData[i-1];
                                     pData[i-1] = iTemp;
                                     t = i;
                                   }
                   }
        right = t-1;
     }while(left<=right);
}


void main()
{
 int data[] = {10,9,8,7,6,5,4};
 Bubble2Sort(data,7);
 for (int i="0";i<7;i++)
             cout<<data<<" ";
 cout<<"\n";
}


2.SHELL排序
这个排序非常复杂,看了程序就知道了。 首先需要一个递减的步长,这里我们使用的是9、5、3、1(最后的步长必须是1)。 工作原理是首先对相隔9-1个元素的所有内容排序,然后再使用同样的方法对相隔5-1个元素的排序,以次类推。
#i nclude <iostream.h>
void ShellSort(int* pData,int Count)
{
 int step[4];
 step[0] = 9;
 step[1] = 5;
 step[2] = 3;
 step[3] = 1;
 int i,Temp;
 int k,s,w;
 for(int i="0";i<4;i++)
           {
             k = step;
             s = -k;
            for(int j="k";j<Count;j++)
                       {
                         iTemp = pData[j];
                         w = j-k;//求上step个元素的下标
                         if(s ==0)
                                     {
                                       s = -k;
                                       s++;
                                       pData = iTemp;
                                     }
                        while((iTemp<pData[w]) && (w>=0) && (w<=Count))
                                     {
                                       pData[w+k] = pData[w];
                                       w = w-k;
                                     }
                        pData[w+k] = iTemp;
                     }
          }
}


void main()
{
 int data[] = {10,9,8,7,6,5,4,3,2,1,-10,-1};
 ShellSort(data,12);
 for (int i="0";i<12;i++)
            cout<<data<<" ";
 cout<<"\n";
}
呵呵,程序看起来有些头疼。不过也不是很难,把s==0的块去掉就轻松多了,这里是避免使用0 步长造成程序异常而写的代码。这个代码我认为很值得一看。 这个算法的得名是因为其发明者的名字D.L.SHELL。依照参考资料上的说法:“由于复杂的数学原因 避免使用2的幂次步长,它能降低算法效率。”另外算法的复杂度为n的1.2次幂。同样因为非常复杂并 “我也不知道过程",我们只有结果了

广告

文章评论 0条评论)

登录后参与讨论
相关推荐阅读
sywm2003_390167918 2014-09-15 21:08
电容降压
  qzlbwang 这个帖子的目的: 1、帮助初学者正确理解电容降压问题。消除某些容易产生的误区。 2、让其达到“知其然,知其所以然”的目的。 3、学会正确进行估算和进行比较精确的计...
sywm2003_390167918 2013-11-06 10:58
叙情
   心若亲近,言行必如流水般自然; 心若疏远,言行只如三秋之树般萧瑟。 不怕身隔天涯,只怕心在南北!新一天,是否还存在彼此心里? ...
sywm2003_390167918 2013-11-06 10:07
你见过最糟糕的产品设计有哪些!!
  ...
sywm2003_390167918 2011-10-21 20:38
航模很有意思
...
sywm2003_390167918 2011-10-21 20:32
笑话
专业维修核潜艇、反应堆,核弹头翻新,抛光,打蜡.回收二手航母,清洗航母油槽、航天飞机保养换三滤.高空作业擦洗卫星表面除尘.批发歼10,F22 F35 B2轰炸机,各类核弹头。量大从优!有发票!全面接受...
sywm2003_390167918 2011-03-20 09:42
Proteus中的以太网物理接口模型
以太网物理接口模型 介绍 Proteus中的以太网物理接口模型提供了一种从仿真电路图访问本地网络的方法。 仿真的网络控制器模型通过现有的以太网卡连接到本地网络。现在Proteus提供了两种以太网卡模型...
我要评论
0
0
广告