广告

原创 当连接器pin stub≥过孔stub,过孔stub是否还需要背钻?

2017-7-21 08:44 829 0 分类: FPGA/CPLD

我们对于过孔背钻已经不陌生了,针对不同信号速率能留容忍的过孔stub长度,相信很多人心中也有概念了。我们在前篇也提到了连接器过孔stub对信号的影响,有兴趣的朋友可前往阅读http://www.edadoc.com/cn/TechnicalArticle/show.aspx?id=1122


但是当连接器pin残留长度≥过孔stub ,过孔stub是否还需要背钻,过孔背钻还有多大的意义?


高速信号的连接器pin的样子都是下图1所示,pin可以分解成3个部分,其中只有pin_2这部分是与过孔孔壁接触的,也就是我们常说的鱼眼。Pin_1负责将信号从连接器引入过孔中;Pin_2负责将信号传递给过孔;pin_3对于信号来说就没有正面的作用了,就是一段stub,为了跟过孔stub相区别,我们在这称之为pin stub,这个pin stub长度对于信号的影响有多大?

gscx-11-01


图1 高速信号连接器pin示意图


下面我们以SFP+ 28 PLUS连接器为例进行探讨。这款连接器的针长2.07+/-0.25mm (1.82mm~2.32mm),如下图所示:

gscx-11-02

图2 SFP+ 2
8 PLUS连接器结构图


它在PCB上的封装如下图所示:

gscx-11-03

图3 SFP+ 2*8 PLUS连接器在PCB上整体封装图


由于一个连接器包含8个光口,为了更清晰地展示它的管脚分布,我们把其中一个光口放大,如下图所示:

gscx-11-04

图4 SFP+ 2*8 PLUS连接器在PCB上单个光口封装图


假设PCB厚度=2.2mm,连接器信号pin长2.2mm,连接器从top层往下压。



  1. 当没有把连接器压进过孔,过孔是空心的,红色圆环为孔壁,过孔的俯视图如下所示:

    gscx-11-05

    图5 过孔俯视图


从bottom到布线层的过孔stub为30.6mil,对过孔做背钻,残留10mil的stub,如下图所示:!

gscx-11-06


图6 过孔背钻侧面图



  1. 当把连接器压进过孔,过孔的俯视图如下所示:

    gscx-11-07

    图7 连接器压入后的过孔俯视图


2.1 当过孔不背钻时,压上连接器后,从bottom到布线层的过孔stub为30.6mil,从布线层到pin的底部有30.6mil,即pin stub=30.6mil。

gscx-11-08

图8 连接器压入后的过孔侧面图


2.2 当过孔从底部背钻时,压上连接器后,从bottom到布线层的过孔stub为10mil,pin stub依然=30.6mil。

gscx-11-09

图9 连接器压入后,过孔底部背钻图


以上各种情况下的插损如下图所示:

gscx-11-10

图10 各种情况插损对比图


说明:

SDD21_1:Case1仅有过孔,过孔背钻,从bottom到布线层的过孔stub为10mil;

SDD21_2:Case2过孔插上连接器的pin后,pin stub=30.6mil;过孔不背钻,从bottom到布线层的过孔stub为30.6mil;

SDD21_3:Case3过孔插上连接器的pin后,pin stub=30.6mil;过孔底层背钻,从bottom到布线层的过孔stub为10mil 。

gscx-11-11

Table1. 连接器过孔不同处理方式对比

当连接器针长非常长,甚至跟板厚一样了,即pin stub≥过孔stub,依然必须对过孔stub进行背钻,不要犹豫,just do it!因为1. 压上连接器后,过孔背不背钻两者在12.5GHz处的差异差了0.418dB(Case3-Case2=0.418dB);2.谐振点的位置由过孔stub决定,如果过孔不背钻,谐振频率提前了12GHz。


虽然过孔stub的影响要大于pin stub 的影响,谐振点的位置由过孔stub决定,但pin stub对插损是有拉低作用的,见Case1、Case3的比较:在同样的过孔stub情况下,pin stub在12.5GHz处对插损拉低了0.165dB(Case3-Case1=0.165dB),但谐振点的位置相差无几;


仿真与真实的差异之处:Case3是我们做产品时,连接器压入过后的真实情况,而与之对应的仿真情况,很多人用的是Case1(即用“过孔”代替“过孔+连接器pin”的效应)这样仿真与真实情况在12.5GHz处的差异有0.165dB,如果链路中会出现2个连接器,那么仿真与真实值就差了0.35dB,当系统裕量紧张时,这点值得关注。


经过本文的分析,相信大家对连接器pin +过孔的综合效应有了清楚的认识,特别是pin stub的影响,在连接器选型时建议还是尽量选择短针的连接器、选择靠下的布线层进行布线,以减小pin stub 的影响。


广告

文章评论 0条评论)

登录后参与讨论
相关推荐阅读
一博科技 2018-09-21 15:08
高速串行协议之CEI-25G-LR
CEI-25G-LR是OIF协议组织下面的通用电气输入输出标准,LR是long reach的简称,可以作为CEI下面的长距离板上传输,所以目前用在背板上,某些点和802.3bj的100G-BASE-K...
一博科技 2018-08-31 17:20
高速串行协议之CEI-28G-VSR
CEI-28G-VSR是OIF协议组织下面的通用电气输入输出标准,在前面的高速先生带你看协议之10Gbps标准组织里有介绍过关于OIF组织,大家可以再了解下。目前的25G、28G光模块主要应用的就是C...
一博科技 2018-08-08 16:30
高速串行协议之SFP+
SFF8431在前面的高速先生带你看协议之10Gbps标准组织里有介绍过,大家可以再了解下:高速先生带你看协议之10Gbps标准组织今天的主角就是SFF8431下面的SFP+信号,它是目前10GBd光...
一博科技 2018-07-27 14:58
高速串行协议之10GBASE-KR
随着电子通信技术的发展,信号传输的速率已经越来越快,目前总线带宽已经发展到100Gbps/400Gbps,正在向1000Gbps带宽迈进。XAUI/XLAUI,SFP+,PCIE,SATA,QPI等都...
一博科技 2018-07-10 16:57
高速信号编码之64B/66B
上文说完了8B/10B之后,我们再来说说貌似更复杂的64B/66B编码。很多人可能在想,8B/10B编码主要作用的优化直流平衡,从8bit中插2个bit进去,这样的话最终效果能够使长0或者长1的位数不...
一博科技 2018-06-29 14:27
高速信号编码之8B/10B
前面文章说过,在高速链路中导致接收端眼图闭合的原因,很大部分并不是由于高频的损耗太大了,而是由于高低频的损耗差异过大,导致码间干扰严重,因此不能张开眼睛。针对这种情况,前面有讲过可以通过CTLE和FF...
我要评论
0
0
广告
关闭 热点推荐上一条 /1 下一条