tag 标签: IGBT

相关帖子
相关博文
  • 2014-11-28 16:20
    281 次阅读|
    0 个评论
       1 引言   目前工业生产中普遍采用的PWM变频调速属于精型调速。而对风机、泵类负载采用变频调速,其逆变器功率为全功率。若采用串级调速方法,则其逆变器功率仅仅为全功率的1/2~l/3。串级调速系统还具有装置安全、可靠性高的优点。即使串级调速逆变装置万一出现故障,异步电动机也能完全脱离串级调速装置转换到转子短接全速运行。但传统串级调速方法存在一个突出的缺点,就是系统功率因数较低,高速满载运转时总功率因数约0.6,低速时总功率因数更差。从节约能源的角度考虑,需要寻找方法提高串级调速系统的功率因数,改善其效率。    2 异步电动机串级调速系统原理   异步电动机串级调速系统是在绕线式异步电动机的转子回路中串入一个与转子回路频率相同的交流附加电势,如图1所示。通过改变附加电势的幅值和相位实现调速。   异步电动机串级调速系统如何通过改变Ef相位调节电机转速。假定电动机拖动恒转矩负载,转子每相电流,2为:   电动机产生的转矩M=CMφI2cosψ2,I2值的减小使电动机转矩亦相应减小,电动机转矩值小于负载转矩值的状态,稳定运转条件被破坏,迫使电动机降速。随着转速的降低,s的值增大,转子电流I2回升,转矩M亦相应回升,直到电动机转矩与负载转矩相等时,减速过程结束,电动机就在此转速下稳定运转,即串入与E2相位相反的附加电势Ef幅值愈大,电动机的稳定转速就愈低。反之亦然。    3 异步电动机串级调速系统功率因数分析   串级调速装置的容量与调速范围成正比,当要求的调速范围不宽时,装置的容量较小,可降低费用。但传统的晶闸管串级调速系统存在突出的缺点:功率因数低、无功损耗大。其原因有以下几方面:   (1)串级调速系统中的逆变变压器需要由电网吸收无功功率QB,这是造成总功率因数低的主要原因。   串级调速系统总的功率因数为:   串级调速系统从电网吸收的总有功功率为P=P1一PB,而从电网吸收的总无功功率为Q=Q1+QB,使得串级调速系统总功率因数较低。   (2)串级调速系统中转子整流电路存在严重的换流重叠现象,引起电动机转子电流落后于转子电压相位μ/2,使电动机本身运转的功率因数变差,即cosψD=cosψcos(μ/2)   (3)串级调速系统中电动机和逆变变压器的电流波形发生畸变,其电流的高次谐波分量引起无功的畸变功率,使串级调速系统的总功率因数亦变坏。提高功率因数的关键是如何减少从电网中吸收的无功功率。    4 几种改进串级调速方案分析   4.1 三相四线双晶闸管串级调速系统   三相四线双晶闸管串级调速的核心是在异步电动机转子回路串入4线式变流器,该电路用辅助的晶闸管为无功功率提供了通路,从而提高了系统的功率因数。其控制方法是通过控制主桥晶闸管和辅助晶闸管轮流导通,使逆变桥直流侧电压在线电压与相电压之间跳变,从而达到提高功率因数的目的。    4.2 新型GTO串级调速系统   新型GT0串级调速系统是在逆变器的直流侧并联一个GTO元件,并通过PWM方式控制GT0的导通和关断,改变直流回路逆变电压,从而调节电动机转速。该方案中PWM的控制方式,可按逆变器的逆变角β固定在正角或β角固定在负角两种不同方式控制,达到不同情况下提高装置功率因数的目的。    4.3 新型三相四线双IGBT串级调速方案   对于新型GTO串级调速系统,尤其在β角为负的情况下,通过装置向电网回馈无功,较大地改善了系统功率因数,但其回馈电流的波形较差,电压损失较大,晶闸管关断不可靠,由于采用PWM控制,系统装置也比较复杂。   为此,需要寻求一种简单、高效的新型转差回馈调速装置,使其能更大程度地提高系统功率因数,从而引入三相四线制双IGBT串级调速方案,其原理如图2所示。绕线式异步电动机的转子输出电压,经整流后与三相桥式晶闸管逆变电路相连;VT7,VT8为两个辅助开关元件IGBT,它为无功功率提供了通路,RCD网络并联于IGBT两端,起限制IGBT峰值电压的作用。   这种方案的基本思想是以传统串级调速装置为基础,在逆变器的直流侧并联两个辅助可关断元件IGBT,其中点与逆变变压器(2次侧采用星形接法)中性点相接。按照一定的控制方式,将逆变角β固定在一个较小角度,通过控制逆变桥晶闸管和2个IGBT元件的导通和关断改变逆变电压,进而调节电动机的转速,达到提高功率因数的目的。    5 新型三相四线双IGBT串级调速控制方案   以逆变桥中5号晶闸管(VT5)与1号晶闸管(VT1)的换相为例分析该方案中IGBT器件的控制方法。图3示出了逆变桥中IGBT与晶闸管的控制脉冲顺序,其中,逆变角β固定在零处,IGBT导通角δ变化范围为0°~120°。   在a,c两相自然换相点(t1时刻)前t0时刻,控制触发VT7导通。VT7管的导通给VT5管加上一个反向电压,IGBT是全控器件,控制脉冲的宽度决定了晶闸管导通时间,VT7导通适当的角度δ,则会给VT5施加足够时间的反压,保证VT5在t1时刻前可靠关断,这样在t1时刻触发VT1管时,就不会出现同组2个晶闸管同时导通的现象,避免了逆变失败。当VT1导通一定角度(120°-δ)后,再次控制VT7导通,可靠关断VT1管,在下一个自然换相点处触发VT3导通,依次循环下去,从而实现了有源逆变。VT8管对VT2,VT4,VT6管的换相控制同上。     此外,IGBT不仅实现了辅助换相作用,还具有调节逆变电压的作用。逆变角β固定不变,当增加IGBT导通时间后,晶闸管关断时间提前,导通时间变短,从而降低了逆变电压。因此,通过改变IGBT脉冲控制角δ的大小,可以改变逆变电压,进而调节电动机转速。
  • 2014-9-26 15:23
    167 次阅读|
    0 个评论
    IGBT失效的主要原因是过温。对于低电压、小电流的 逆变系统 设 计,技术已经非常成熟,然而,对于高电压、大电流的应用,技术难度激增。日前,英国剑桥的Amantys公司推出了最新的4500VIGBT栅极驱动器 Amantys Power Drive,它具有先进的Amantys Power Insight状态监测功能,通过监测系统内的各种信息,提高了产品的可靠性与可用性。 据Amantys 市场营销副总裁Steve Evans介绍,该公司在2010年获得剑桥大学一些专利,由ARM公司的高管和剑桥大学的技术人员合作创立。随后,Avago公司和Fi del i ty集团下属公司Moonray Investors也参与了投资。因此,Amantys产品采用ARM CPU设计。 该公司约由25人组成,其中大部分都拥有较强的技术背景,包括电力电子、嵌入式软件等。Amantys的主要产品是IGBT栅极驱动器,可应用于高压直流输电、机车牵引、电力机车和风力发电等应用。 中 国的IGBT市场充满前景。近来,中铁建投招标91列动车组,全国35个城市规划建设6000km轨道线路。在风力和太阳能等可再生能源领域,中国光伏发 电量将赶超德国,成为世界第一。另外,中国在高压直流输电和中压工业驱动方面也都被看好。Steve Evans表示:“这四个行业的共同点是对可靠性的要求比较高,我们可以帮助客户提高产品的可靠性和可用性(使用寿命)。” 该 IGBT栅极驱动器可用于驱动4.5 kV 、额定电流为450A~1200A的IGBT , 兼容世界主要I G B T模块制造商的产品,例如ABB、Dynex( 被南车收购) 、日立、英飞凌、三菱。该产品采用CPLD和基于ARM Cortex-M0 的MCU 进行设计。同时, 它提供光纤接口进行远程通信。Amantys Power Insight监测功能提供对电压(如集电极-发射极电压、栅极供电电压)和温度等数据的监测。另外,Amantys提供了Amantys Power Insight开发包,可以帮助工程师在设计新产品时进行调试。 该产品的一个应用案例是,葡萄牙EMEF公司(负责该国铁路车辆维护的一家公司)的列车比较老旧(有20多年历史),系统采用GTO、 晶闸管 设 计,因此其维护费用不断攀升。该公司在采用Amantys Power Insight技术后,开发出了新的系统,采用IGBT模块替换了GTO和晶闸管,使故障率和维护成本得到降低。通过Amantys Power Insight功能,EMEF能够查询到系统的各种信息。今年,Amantys在德国的一个展会上,对葡萄牙列车进行了远程实时监控,通过发现逆变器的问 题,可以通知工程师前往现场进行维修。 最后,威柏电子(Amantys在中国的一家代理商)的与会代表补充说,逆变系统最重 要的两个部分是DSP和IGBT。IGBT失效的主要原因是过温,这其中又包括电压过高导致器件击穿、过流等。Amantys Power Insight技术能够监测电压、电流等数据,从而在产品失效前给出警告信息,确保了系统的安全。这种技术采用数字方式驱动,与传统的模拟驱动不同,它可 以编程设置各种参数。目前,能够提供该技术的公司在全球仅Amantys一家。
  • 2013-9-9 10:32
    461 次阅读|
    0 个评论
    IGBT技术不能落后于应用要求。因此,英飞凌推出了最新一代的IGBT芯片以满足具体应用的需求。与目前逆变器设计应用功率或各自额定电流水平相关的开关速度和软度要求是推动这些不同型号器件优化的主要动力。这些型号包括具备快速开关特性的T4芯片、具备软开关特性的P4芯片和开关速度介于T4和P4之间的E4芯片。 表1简单介绍了IGBT的3个折衷点,并对相应的电流范围给出了建议。 IGBT和二极管的动态损耗 为研究和比较这三款不同芯片在杂散电感从23nH到100nH时的开关损耗和软度,我们选用了一种接近最优化使用T4芯片的合理限值的模块。因此,选择一个采用常见的62mm封装300A半桥配置作为平台,而模块则分别搭载了这三款IGBT芯片。 这三个模块都采用了相同的高效发射极控制二极管和栅极驱动设置。图1为实验设置。 图2显示了两个不同杂散电感对配备IGBT-T4的300A半桥的开通波形的影响。 当电流升高后,更高的杂散电感Ls不仅可以增大器件端子的电感压降(Δu=-L*di/dt),而且还能影响电流上升速度di/dt本身。尽管寄生电感使导通速度减缓,但导通损耗却大幅降低。 在该示例中,初始开关阶段的损耗(见图2中的时间戳a)随着杂散电感的增大由30.4mW降至12mW。 开关事件第二阶段的特点是二极管出现反向恢复电流峰值以及IGBT电压进一步下降。寄生电感的增大会导致反向恢复电流峰值的延迟,以及第二阶段开关损耗的提高。 因此,就整个开关事件而言,寄生电感的增大可大幅降低开通损耗。在本例中,损耗由40mW降低至23.2mW。 众所周知,虽然在开通过程中di/dt可降低IGBT的电压,但在关断过程中它也会增大IGBT的电压过冲。因此,直流母线电感的增加会增大关断损耗。如图3所示,关断的开关事件可分为两个阶段。 《电子设计技术》网站版权所有,谢绝转载 小电感和大电感设置的电流波形在时间戳b的位置交叉。在第一开关阶段直到交叉点b,采用大电感设置升高的过压会使损耗增至36.3mJ,而小电感设置的损耗为30.8mJ。不过,在b点之后,大电感设置会产生较短的电流拖尾,这样该阶段的损耗会比小电感设置的损耗低1.8mJ。这一结果主要受电流拖尾降低的影响,即更快速地达到10%的值。 随着杂散电感的增大,IGBT的开通损耗会降低,二极管损耗则会增大(如图4所示)。图4显示了在小电感和大电感条件下二极管恢复特性的对比。 显而易见,IGBT降低的di/dt几乎对二极管换流开始阶段的损耗没有任何影响,因为二极管电压依然维持在零左右。在反向恢复峰值电流之后,更大杂散电感引起的二极管电压升高决定并导致了额外的损耗。小电感和大电感设置的二极管拖尾电流中可再次看到交叉点c。更高的过压使得c点之前的损耗从10.1mJ增至19.6mJ。与IGBT的情况一样,增加的动态过压会导致c点之后的拖尾电流降低,大电感设置的损耗平衡将优化4.4mJ。总之,第一开关阶段起主导作用,二极管损耗随着电感的增加从24.6mJ提高至29.7mJ,增幅为20%。 尽管在开通过程中,di/dt与寄生电感的结合可降低IGBT的电压,但在关断过程中,它将增大IGBT的电压过冲。将开通与关断过程进行左右对比,不难看出,在较大寄生电感时开通损耗的降度远高于关断损耗的增幅。 如果考虑到最新沟槽栅场截止IGBT的关断di/dt本质上受器件动态性能的制约,约为导通di/dt的一半,就可轻松理解这一趋势。 在图5中,对IGBT开通损耗、关断损耗以及二极管换流损耗与三款IGBT的寄生直流母线杂散电感进行了对比。 《电子设计技术》网站版权所有,谢绝转载 IGBT和二极管的软度和电流突变特性 前文已经表明寄生电感可能对总体损耗平衡有益。但是杂散电感还可能导致振荡,比如由电流突变引起的振荡,这可能导致由于EMI或过压限制而引起的器件使用受限。迄今为止所介绍的所有测量都是在对损耗至关重要的Tvj=150℃结温条件下进行的。电流突变在低温条件下更加关键,因为器件的载流子注入随着温度的降低而减少,并大幅降低用于平滑拖尾电流的电荷。因此,图6在25℃和600V直流母线电压的条件下,对三款芯片在额定电流下的IGBT关断情况进行了比较。直流母线电感被作为一个参数使用。 在给定的例子中,当杂散电感约为55nH时,T4会变硬,振荡开始发生。在相同条件下,直到直流母线电感达到约80nH,E4还依然保持了软度。对于针对大功率而优化的P4芯片而言,它在观察到的电感范围内(20nH…100nH)都保持软度。这种观察结果并不出人意外,因为该IGBT是被设计用于高达3600A额定电流的大功率模块。 尽管IGBT的电流突变趋势通常在低温和大电流下最为明显,但续流二极管软度通常在低温和小电流下最为关键。这取决于几个因素:因为二极管是一个载流子生命周期优化器件,等离子体密度在小电流下最低,因此拖尾电荷随着电流水平的降低而减弱。此外,迫使二极管换向的开关IGBT通常在低电流水平下开关速度更快。最后,二极管过压与开关电流没有关系,而是由二极管的反向恢复电流峰值的负斜率导致的,该斜率在小电流和低温下同样最陡。 由于快速开关瞬变(du/dt和反向恢复di/dt)的影响,直流母线振荡可以很容易地在低电流水平下触发,甚至是在没有二极管电流突变的情况下。图7介绍了续流二极管在不同杂散电感条件下的反向恢复特性。 此时,低杂散电感可产品较高的谐振频率,并且有助于抑制这种振荡。当然,如果大杂散电感使得二极管真的出现电流突变,情况会更糟。出于EMI的考虑,这将限制较高杂散电感的使用。 本文小结 当工作在相同条件下,IGBT针对提高软度需求的设计优化将会付出开关损耗提高的代价。 除开关损耗外,开通和关断速度、电流突变和振荡(EMI)的发生也越来越受到重视。寄生杂散电感对直流母线谐振频率和二极管电流突变起到了重要作用。至少从EMI角度考虑,二极管电流突变将会对通过增加杂散电感或提高IGBT开通速度来降低开通损耗有所限制。 因此,未来有望推出IGBT的不同型号优化产品。另一方面,考虑到直流母线电感是逆变器设计中的一个自由参数,这将有助于进一步优化损耗。 重要的是,为确保采用快速开关器件(如T4芯片),必须对直流母线设计进一步优化。在高能效设计中,对于电感而言,越低越好是一个简单的原则。 点击查看: 稳频稳压电源的稳定性分析与设计
  • 热度 1
    2013-3-31 19:28
    332 次阅读|
    0 个评论
      发展 电力电子 产业的首要意义在于节约电能,因此,高效率是我们对电力电子器件的基本要求。新型电力电子器件 IGBT (绝缘栅双极型功率管)已在工业控制、 消费电子 、 汽车电子 等多个领域充当了节能的“急先锋”,而在新能源领域,电力电子器件也是不可或缺的元素。   电力电子器件在其发展的初期(上世纪60年代-80年代)主要应用于工业和电力系统。而近20年来,随着4C产业(通信、计算机、消费电子、汽车)的蓬勃发展,电力电子器件的应用范围有了大幅度的扩展,其技术已成为航空、航天、火车、汽车、通信、计算机、消费电子、工业自动化及其他科学与工业部门至关重要的基础。   电力电子是节能关键技术   电力电子技术是实现高效节能、改造传统产业并促进机电一体化的关键技术。它是弱电控制与强电运行之间、信息技术与先进制造技术之间的桥梁,是我国国民经济的重要基础技术,是现代科学、工业和国防的重要支撑技术。电力电子器件是电力电子技术的基础和核心,电力电子技术的发展是围绕着各种新型电力电子器件的诞生和完善进行的。   当前,发展电力电子产业的首要意义在于节约电能。北京工业大学电子信息与控制工程学院亢宝位教 授在接受《中国电子报》记者采访时就曾表示:“为解决能源短缺的问题,除了‘开源’之外,‘节流’的潜力也是十分巨大的,而节流的首要措施就是电力电子器件的发展及其推广应用。例如,据统计,我国用于电机的电能占我国总发电量的60%以上。如果全国电机的驱动都采用电力电子器件进行变频调速,电机耗费的电能就可节能大约1/4到1/3,也就是说可节约全国总发电量的15%至20%。”   中国电工技术学会电力电子学会副理事长兼秘书长白继彬则告诉《中国电子报》记者,节能和高效是电力电子技术的主要特征,这主要是因为电力电子器件一般工作在较理想的开关状态。电力电子学与信息电子学在技术上主要的不同点就是功效问题,对信息处理用的低电平电路很少要求其效率超过15%,而电力电子技术中的功率电路的效率则必须在85%以上。由此可见,高效率是电力电子器件的根本要求。   IGBT在多个领域表现出色   要实现“十一五”规划中提出的“单位国内生产总值能源消耗比‘十五’期末降低20%左右”的目标,关键是要有效降低工业生产过程中那些大电流和高电压应用的功耗,如交流电机控制、逆变器、 继电器 、开关电源、变频器、工业传动装置、机车与列车用电源以及供暖系统传动装置等工业自动化应用的能耗。   所有这些交流控制应用都需要能够产生大电流和高电压的核心功率器件,作为新型电力电子器件的代表,IGBT(绝缘栅双极型晶体管)越来越受到业界的重视。IGBT是MOS结构的双极器件,它兼具功率MOSFET(金属氧化物场效应晶体管)的高速性能和双极晶体管的低电阻性能,具有电压型控制、输入阻抗大、驱动功率小、开关速度快、工作频率高、安全工作区大等优点,这使得IGBT器件成为大功率工业自动化应用的理想功率开关器件。IGBT的应用范围一般都在耐压600V以上、电流10A以上、频率1kHz以上的领域。   除了在工业控制领域的应用之外,随着人们节能意识的逐步增强,消费电子产品对于IGBT的需求量也迅速增长。     例如在感应加热的应用上,IGBT就因其具有耐高压和较高开关频率的特点而成为电磁炉中的关键组件;而变频空调、变频洗衣机等变频家电也主要使用集驱动电路、保护电路功能于一身的IGBT智能模块,它简化了电路设计;在照明应用方面,IGBT也是高压气体放电灯(HID)、灯具调光器以及高频镇流灯所需的器件。此外,在汽车电子领域,IGBT也已经代替达林顿管成为汽车点火器的首选器件;而意法半导体亚太区模拟、功率及微机电系统事业部总监宝罗尔在接受《中国电子报》记者采访时则表示,大电流IGBT也越来越多地应用到混合动力汽车的主转换器中。   开源也靠电力电子   在全球范围内解决能源短缺问题,“开源”和“节流”是两条最根本的途径。利用电力电子器件提高系统的效率,降低能耗,属于“节流”的范畴;而开发新能源,以替代煤、石油、天然气等不可再生的能源,则属于“开源”的范畴。事实上,在“开源”的领域,电力电子器件也起着重要作用。   太阳能发电一直是人类探索新型能源的重要领域。近20年来,我国光伏产业得到了快速发展,1990年-2007年,我国太阳能电池的产量增长了1641倍。2007年,我国太阳能电池产量为821MW(兆瓦),占世界总产量的22%,位居世界第二。要将太阳能发电机组产生的直流电并入电网,就必须用逆变器将直流电转化为交流电。而由于市场对可再生能源的需求上升,太阳能逆变器的市场也在不断增长。而这些逆变器需要极高的效率和可靠性,对于需要1200V功率开关的太阳能逆变器来说,IGBT是理想的选择。   在风力发电领域, 电力电子 器件在变流器中的应用也起到至关重要的作用。三菱电机机电(上海)公司总经理森敏在接受《中国电子报》记者采访时表示:“风力发电变流器是连接发电机和电网的桥梁,通过变流器可以使风力发电机组风轮转速跟随风速进行改变,从而最大限度地提高风能的利用效率,有效降低载荷,同时保证风轮及其所驱动的电机转速变化时,输出的电能频率始终与电网频率一致。”
  • 热度 1
    2012-9-12 15:18
    750 次阅读|
    0 个评论
    作者:飞兆半导体 Sungmo Young, Bongjoo Choi 和 Dongsoo Kim       光伏 (PV) 逆变器的设计人员已发现,使用具有高阻断电压的 IGBT 可以在几个方面帮助提高性能和可靠性。 较高的阻断电压可提高转换器的输入级范围,从而更容易处理太阳能电池板的总线电压峰值。 增加阻断电压也可使光伏逆变器更耐低温,即使在较冷的气候条件下,系统也可安装在户外。 中间点钳位拓扑 三电平中间点钳位 (3L-NPC) 拓扑不仅是高功率光伏逆变器的新趋势,而且也是低功率和中等功率逆变器的新趋势。 设计人员可能经常面临直流母线电压不平衡的问题,而且此问题不能完全解决,并可能会导致电压尖峰。 在这种情况下,提高阻断电压(如 3L-NPC 拓扑结构)能够有效帮助提高逆变器的可靠性。 这种拓扑结构也可以提高输出电压的频谱性能,在设计时可以使用更小、更便宜的过滤器。 在此类系统中,IGBT 的限制通常是 600V,因为对于 600V 以上的设备,用于弥补低 V CE (SAT) 的技术 会导致开关速度更慢,且开关损耗更大。 效率不降低,阻断电压更高 Fairchild 最近推出了 650V IGBT,使设计者能够不牺牲效率即可利用更高阻断电压的优势。 在对具有相同配置的 FGH60N60SMD 600V IGBT 和新型 FGA60N65SMD ​​ 650V IGBT 进行横向比较时,两个设备显示出几乎相同的 V CE (SAT) 特性。 正如图 1 所示,在室温和高温下且额定电流分别为最多 60A 和低于 30A 时,650V IGBT 具有略低的 V CE(SAT) 。       图 1. 直流特性: 饱和电压 图 2 显示了在 V DD = 400V、V GE = 15V 和 R G = 3 Ω 条件下,开通和关断开关损耗的总和。 而且,600V 和 650V IGBT 产生的结果非常相似: 在高温和电流为额定电流一半的条件下,总开关损耗是相同的,而在室温和额定电流下,650V IGBT 的损耗要高 5%。 总体而言,在典型的工作温度和电流水平条件下,电路评估产生的结果非常接近。 图 2. 对照集电极电流的开关损耗   为了评估系统级性能,我们进行了基于 IGBT 特征数据的损耗分析,如图 1 和图 2 所示。 我们使用了全桥逆变器拓扑,目标是建立一种混合开关控制机制。 图 3 给出了每个 IGBT 的原理图和电流波形。           图 3. 对照集电极电流的开关损耗 高位的 IGBT 在高频率时开启和关闭,而低位的 IGBT 切换线路频率,为另一半电网周期提供单向传动路径。 图 4 显示了当高位 IGBT 开关频率是 17kHz、输出功率为 3kW 时,每个 IGBT 的预计功率损耗。 我们假设输入电压为 400VDC,输出电压为 220VAC,为了使计算简单,快速得到模拟结果,假设 IGBT 外壳温度为 70°C。 图 4. 预计功率损耗 降低的功率损耗 当工作频率为线频时,650V IGBT 的功率损耗似乎略小。 这是因为,即使将因共同封装二极管反向恢复电流产生的峰值电流考虑在内,IGBT 的集电极电流大约是 19A(或不到额定电流的一半)。 图 4 与图 1 和图 2 的结果是一致的。 图 5 显示了将 600V 和 650V IGBT 应用至一个额定 3kW、单相、并网光伏逆变器时的结果。 输入和输出的规格大致与采用混合频率控制全桥拓扑结构,且高位开关频率为 17kHz 的第一个例子相同。 图 5. 效率测试结果   新型 650V IGBT CEC 加权效率为 96.70%,而 600V IGBT 的加权效率为 96.62%。 系数加权在75%的最大功率 时最高,在这种情况下即功率为 2250W。 结论 设计者可以将自己的光伏逆变器从 600V IGBT 升级到 650V IGBT,以在不牺牲性能的情况下获得更高的阻断电压容量。 650V IGBT 的低饱和电压和快速开关速度相结合,使系统能够保持高效率。 增加阻断电压提高了可靠性,特别是在寒冷的环境中,IGBT 的快速软恢复功能降低了功耗,并实现了较低的开启和关闭损耗。
广告